自習型プログラミング塾「テックジム」ならオンライン学習で学べる!!

プログラミングの思考法自体を学べる自習教材

テックジムは全国に30校あります。
それでも遠方で通えないという方、コロナのご時世なので、オンラインで利用したいという方のために。

・教科書がない、授業がない
・効率学習(授業型の3分の1の学習時間でマスターできる)
・オンラインサポートでトレーナーに自由に質問できる

通常サービスは通学型で月会費制になりますが、そこを一括払いで教材を一気に購入したいという方向けです。
AIなどは様々なテーマがあるので、興味あるところだけ学習できます。

テックジムとはどんな教材?

製本した教材を郵送されてきます。
教材は課題のテキストとサンプルソースで構成されており、1課題ごとにサンプルソースやヒントが用意され、課題の通りにコーディングしていく内容。

テックジムの教材一括購入について詳しくみてみる

Python基礎コース(第1章〜7章)送料無料 ¥187,000

第1章 「じゃんけんゲームを作る」
・Pythonの書き方
・条件分岐(if文)
・関数 ・リスト(配列)
・辞書(ハッシュ)
・繰り返し(for文)
・バリデーション(入力チェック)

第2章 「間違い探しゲームを作る」
・乱数
・繰り返し(while文)
・二重ループ
・リスト(配列)
・辞書(ハッシュ)
・二次元配列

第3章 「野球シミュレーションゲームを作る」
・クラス
・インスタンス
・アルゴリズム

第4章「カジノゲームを作ろう」
・クラス(継承)
・今まで習ったことの総復習と深掘り

第5章「発展系の書き方をしよう」
・文字列連結の応用技
・for文の応用技
・配列の応用技(numpy)
・スクレイピング基礎(requests)
・画像表示、加工

第6章 「ブラックジャックゲームを作ろう」
・クラスの理解を深める
・二次元リストの応用
・画像の表示、結合

第7章「卒業課題」
今まで第1章から第6章まで作ってきたものをレベルアップ(仕様追加、変更)します。
この頃にはもう、プログラミングに自信を持ち、プログラミングが好きでたまらなくなっていることでしょう。

開発環境:Google Colaboratory

●SLACKサポート(1年間有効)
会員同士の交流や、トレーナーへの質問など、フラットに交流することができます。

●ZOOMサポート(1年間有効)
ZOOMの会議室に入室して自由に質問することができます。

AIエンジニア養成コース(第0章〜15章)送料無料 ¥385,000

<想定案件イメージ>
・回帰分析を学ぶ:接客、品揃え、面積のデータから店舗の売上を予測する需要予測に用いる
・営業訪問回数、値引率などを数値化し、取引額を目的変数に設定すれば、営業活動の予測にも用いることができる

<学ぶこと>
・numpyライブラリ
・scipyライブラリ
・matplotlibライブラリ
・ヒストグラム
・Seriesライブラリ
・Pandas
・DaraFrameライブラリ
・データ分析

第1章「教師なし学習と自然言語処理入門」

教師なし学習のモデル(クラスタリング、主成分分析、アソシエーション分析)を用いたデータ分析を学びます。
また、自然言語処理の基本を身につけ、特に自然言語の形態素解析とベクトル化手法を扱えるようになります。

<想定案件イメージ>
・クラスタリング分析:顧客分析でユーザーをセグメントに分けてマーケティングに活用出来る
・チャットボットの開発:営業の問い合わせ自動応答システムが出来る

<学ぶこと>
・クラスタリング(k-means)
・主成分分析(PCA)
・アソシエーション分析
・形態素解析
・word2vec
・ベクトルの演算
・データの類似度

第2章「特徴量エンジニアリング」

データのグラフ化の復習を兼ねて、「特徴量の選別」を学びます。
これにより機械学習モデルの精度向上や精緻化をするときに活かせることができます。

<学ぶこと>
・ヒストグラム
・統計量
・欠損値
・標準化(スケーリング)
・正規化(スケーリング)
・カテゴリ変数
・one-hot-encoding
・特徴量エンジニアリング

第3章「回帰問題」

回帰問題を学びます。これにより不動産などの価格予測をすることができます。

<学ぶこと>
・教師あり学習のモデル(回帰、分類)を用いてデータ分析ができるようになる
・線形単回帰
・重回帰分析
・Ridge回帰
・Lasso回帰

第4章「分類問題」

分類問題を学びます。
例えば顧客分析で対象の顧客がある商品を買うか買わないかを予測することができます。

<学ぶこと>
・教師あり学習のモデル(回帰、分類)を用いてデータ分析が出来るようになる
・ロジスティック回帰
・シグモイド関数
・決定木
・ランダムフォレスト
・ブースディング
・サポートベクターマシン
・k 近傍法
・非線形

第5章「実践ビジネスデータ分析」

実践的な顧客分析を学びます。スポーツジムで新規の顧客が入会するかどうかや顧客の継続率や退会するかの予測をしていきます。

<学ぶこと>
・顧客データの整形
・顧客データの集計
・利用履歴を使ったクラスタリング
・利用回数の予測モデル

第6章「AIのための統計学入門」

統計の基本的な扱いを学びます。アンケートを分析したり、視聴率や選挙など大きな母数があるときの分析に活用できます。

<学ぶこと>
・推測統計
・復元抽出
・非復元抽出
・区間推定
・不偏分散
・カイ二乗分布
・信頼区間
・確率分布
・正規分布

第7章「DeepLearning基礎」

DeepLearningは、画像分類や自動運転や工場での不良品検知、顔認識技術などに使用できます。スマートデバイスの音声検索・音声操作や多言語の同時翻訳システムなどにも応用できます。

<学ぶこと>
・CNN(畳み込みニューラルネットワーク)
・RNN(再帰型ニューラルネットワーク)
・TensorFlow
・Keras
・活性化関数
・単一のニューロン
・ニューラルネットワーク

第8章「DeepLearning応用」

第9章「GANによる画像生成」

GANを扱えるようになると写真・絵画を生成したり学習用の疑似データを生成出来るようになります。また自然言語処理ではチャットボットの基礎が学べ、営業の問い合わせ自動応答システムが出来るようになります。

第10章「衛星データと機械学習」

衛星データをビジネスに活用すると、石油タンクの減り具合から原油価格を予測する 、市街地の地形から繁盛店になるかを予測するというようなことができます。

第11章 「アンサンブル学習と精度向上手法」

学習モデルの精度向上や精緻化が出来るようになると、例えばこれまでは予測が80%しか当たらなかったものが95%になるようになります。

<学ぶこと>
・混同行列
・性能評価指標
・ROC曲線とAUC
・SVM(サポートベクターマシン)
・ロジスティック回帰での性能評価
・ハイパーパラメータチューニング
・グリッドサーチ
・バギングとブースティング
・交差検証
・k-NN、ロジスティック回帰、決定木、SVM、ランダムフォレスト、勾配ブースティングのモデルを比較
・KFlod法
・Random Seed Averaging
・LightGBM
・重回帰、リッジ回帰、決定木(回帰)、線形SVM回帰

第12章「AI活用 WEBサービスを作ろう(オリジナル画像判定)」
機械学習AutoMLを利用して様々な画像認識を試し、花を判定するアプリを作成します。
また、ネットから収集した画像でオリジナルの画像判定アプリの作成に挑戦していただきます。
画像分類が簡単に出来るようになると、プログラムを書かなくても画像分類が出来るようになります。

<学ぶこと>
・データベース(SQLite,PostgreSQL)
・WEBフレームワーク(Flask)
・Bootstrap
・Herokuでのデプロイ
・Google AutoML vision
・画像分類モデル作成
・WEBアプリケーションのデプロイ

第13章「AI x IoT(センサーデータ分析と画像分類・物体検出)」

IoTのセンサーデータを扱えるようになると、センサーデータを用いた電力需要予測をするといったことができるようになります。

<学ぶこと>
・センサーデータのデータ分析ができる
・CNNの基礎がわかって、モデルを作成することが出来る
・人工知能とOpenCVを使った物体検出が出来る

第14章「効果検証に機械学習を導入しよう」

効果検証を数値的な指標で行えるようになると、売上を上げるWEBサイトを作るための評価ができマーケティングに活用できます。

<学ぶこと>
1.ビジネスデータの可視化(DAU編、アクセス数編、課金アイテム編)
2.効果検証の仕方を学ぶ
・確率分布と累積分布のグラフ
・尤度で比較したグラフ
・「統計検定量」「p 値」「自由度」「期待度数」
3.A/BテストにUplift Modelingを導入する

第15章「推薦システムを作ろう」

オススメの映画やアニメを推薦してくれるシステムができるようになります。またECサイトや顧客分析に活用できます。

<まとめ>
1.データの処理方法を学ぶ
MovieLens 1M(映画評価データ)のデータを元にデータの前処理について学習します。
2.協調フィルタリング(k近傍法)の仕組みを利用した推薦システムを作る
kaggleの76,000ユーザーに基づくアニメの推薦データを利用します。
3.Factorization Machinesを使った推薦システムを作る
Netflix Prizeで最も成果を上げたMatrix Factorizationを一般化したアルゴリズムを利用します。

※推奨環境:anacondaをインストール、Jupyter Notebookで実行

オンラインでいつでも質問できるサポート付き!ZOOMでのトレーナー対応もあり

 

【SLACKサポートオンラインで質問可能】

・SLACKによる質問対応

テックジム会員限定のSlackコミュニティがあり、サポート時間は東京本校の開校期間。

【ZOOMオンラインで質問可能】

・ZOOMによるオンライン対応(平日19-22時・土曜13-19時)
※テックジム東京本校のトレーナーが対応(日祝は休み)

テックジムに通学できない方向けに、教材の一括販売なら、遠方でも、オンライン希望の方ならおすすめできる新しいプログラミング学習です。

テックジムの教材一括購入について詳しくみてみる

\ユーザーが選んだ!プログラミング教室Ranking/
順位 スクール名|公式へ移動 特徴
4.7 未経験でも転職保証!

無料相談

口コミ詳細

4.2充実のサポート環境!

無料体験

口コミ詳細

3.9 完全無料の転職支援!

無料説明

口コミ詳細